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ABSTRACT

Rainfall attenuation has a severe effect on
signal strength and impairs communication links
for future mobile and personal satellite commu-
nications using Ka-band and millimeter wave
frequencies. As rain attenuation compensation
techniques, several methods such as uplink
power control, site diversity, and adaptive con-
trol of data rate or forward error correction have
been proposed. In this paper, we propose a
TDMA system that can compensate rain attenua-
tion by adaptive control of transmission rates.
To evaluate the performance of this TDMA ter-

minal, we carried out three types of experiments:

experiments using a Japanese CS-3 satellite with
Ka-band transponders, in-house IF loop-back
experiments, and computer simulations.
Experimental results show that this TDMA sys-
tem has advantages over the conventional con-
stant-rate TDMA systems, as resource sharing
technique, in both bit error rate and total TDMA
burst lengths required for transmitting given in-
formation.

INTRODUCTION

The Communication Research Laboratory
(CRL) has been carrying out L-band mobile
satellite communications experiments using the
Engineering Test Satellite Five (ETS-V), which
was launched in 1987. This study will be ex-
tended to advanced mobile and personal com-
munications at Ka-band and millimeter wave
frequencies using the Communications and
Broadcasting Engineering Test Satellite

(COMETS), which will be launched in 1997 [1].

Advantages to use such higher frequencies are
much wider available frequency bandwidth and
substantial system size reduction. On the other

hand, we have to overcome such disadvantages
as significant rain attenuation, larger Doppler
shifts, higher RF component losses, larger
phase jitters, etc.

At frequencies above 10 GHz, signal atten-
uation due to rainfall can have significant im-
pairment on space-to-earth communication links.
To compensate rain attenuation, several methods
such as uplink power control{2][3], site diver-
sity[4], and adaptive control of data rate and/or
forward error correction techniques[5] have been
proposed. Uplink power control and site di-
versity techniques are very useful for large or
medium size earth stations at large networks
covering different climatic regions. On the other
hand, adaptive control of data rate and error cor-
rection techniques are more appropriate to small
earth stations, since both small antenna size and
limited RF transmit power impose a restriction
over the range of the uplink power control.
Moreover, these adaptive control techniques can
compensate downlink attenuation as well as up-
link attenuation.

In this paper, we propose a TDMA terminal
with adaptive control capability of transmission
rate to compensate rain attenuation. We carried
out experiments using Japanese Communication
Satellite-Three (CS-3) with Ka-band transpon-
ders to evaluate the performance of this terminal
under rainfall conditions.

ADAPTIVE TRANSMISSION-RATE
TDMA

In this Adaptive Transmission-Rate TDMA
terminal, later referred to as ATR-TDMA, a re-
ceive terminal that is suffering rain attenuation
requests the transmit terminal to reduce trans-
mission rate of the TDMA burst, according to
degradation in bit error rate (BER) or carrier-to-

505



noise density ratio (C/No). Six different trans-
mission rates are available in this terminal. For
example, a transmission rate reduction by a fac-
tor of four can compensate the degradation of 6
dB due to rain attenuation. Therefore, this sys-
tem enhances the power margin by 15 dB.in all
theoretically.

Figures 1 and 2 show a block diagram and a
scheme of modulation and demodulation of the
ATR-TDMA terminal, respectively. Data bit
stream is stored in a buffer and divided into data
bursts, the length of which corresponds to data
bits within one TDMA frame. Data rate Rb is
assigned as follows:

Rb = Rc /2N-2
for N=1,2,3,4,5,and6 (1)

where Rc is the reference clock rate of 4.144
Mbps in the present system, N=1 for QPSK,
and N=2, 3, 4, 5, 6 for BPSK. Therefore, six
possible data rates are 8288, 4144, 2072, 1036,
518, and 259 kbps.

After the baseband signal is scrambled with a
pseudonoise (PN) code generated at Rc bps, a
carrier is PSK modulated in burst mode. Since
PSK modulator always works at the same clock
rate of Rc, every TDMA bursts always occupy
the same frequency bandwidth.

Receive terminal recovers clock rate from the
received signal and then recovers data clock
from burst timing. The present transmission rate
can be known from information bits stored in the
preamble of a TDMA burst. After coherently
demodulated PSK signal is descrambled by the
same PN code, 2N-2 bits are added with syn-
chronous timing of clock rate and one informa-
tion bit can be reproduced based on majority
rule. This process of the synchronized sum is
equivalent to reduce the transmission rate from
Rc bps to Rc/2N-2 bps. For example, a trans-
mission rate reduction by a factor of two extends
the burst length twice and BER performance can
be improved by 3dB in C/No.

The TDMA frame format and data burst for-
mat are shown in Figure 3. One TDMA frame
consists of a reference burst, a synchronization
burst, data bursts, and initial acquisition slot.
The frame period is 15 milliseconds and one
control frame of 1200 millisecond period con-
sists of 80 frames. Each data burst is divided
into a preamble for receiver synchronization and
data bits. This preamble consists of two parts of
P1 and P2. In P1, carrier and clock recovery
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patterns, and an unique word for identifying
each terminal and synchronizing a burst timing
are included. In P2, identification codes for
transmit and receive terminals, and information
bits for control of transmission rate are included.
Since information bits in P1 are essential for all

terminals in this TDMA network, this part is sent

at the lowest transmission rate. On the other
hand, since bits in P2 is necessary only for
transmit and receive terminals under communi-
cation, transmission rate of P2 is the same as
data rate of each TDMA burst. Moreover, using
majority-rule decision of preamble information
that is received over several frames, the TDMA
terminal can reduce possibility of incorrect op-
erations in the TDMA network. Transmission
rates can be changed only once within one con-
trol frame.

RAIN ATTENUATION
COMPENSATION EXPERIMENTS

Satellite Experiments

We carried out experiments using the CS-3
satellite to evaluate the performance of the ATR-
TDMA terminal at Ka-band satellite link.
Communication channels were monitored by
measuring both BER and C/No with measuring
equipments and a personal computer.

Since allowable BER without FEC is de-
signed to be 10-3 in this system, we assigned
BER of 8.0*10-4 or C/No that corresponds to
BER of 8.0%¥104 as the threshold to change
transmission rates. When BER or C/No is
worse than the threshold for Td seconds,
transmission rate is reduced half. When BER or
C/No is better than the threshold for Tu seconds,
transmission rate is increased twice.

Figure 4 shows the experimental result that
was controlled from degradation in C/No with
Td = 5 seconds and Tu = 5 seconds. Top of this
figure shows rain attenuation of eighteen-hour
measurement at satellite loop-back link ( includ-
ing both 20 GHz and 30 GHz attenuation ) and
20GHz-beacon. Controlled transmission rates
in kbps and measured BER are shown in middie
and bottom of Figure 4, respectively. According
to rain attenuation, the ATR-TDMA terminal
controlled its transmission rate to keep BER
better than the allowable BER with as high
transmission rates as possible. This terminal can

compensate rain attenuation actually up to about
15 dB ( although theoretically 16dB ). When
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rain attenuation is larger than 15 dB or rain rate
becomes faster than response time of this sys-
tem, BER becomes larger than the allowable
value. However, such unavailable time duration
is improved and becomes considerably short.

With the lowest transmission rate at con-
stant-rate TDMA terminals, we could keep BER
better than the threshold like the ATR-TDMA
terminal. However, total TDMA burst lengths
required for transmitting the same information
will become much larger than ATR-TDMA.
Next, we study BER and total burst lengths of
ATR-TDMA as a function of different Td and Tu
values.

In-house Experiments

Values of parameters Td and Tu are very im-
portant for effective control of transmission rate.
In the TDMA network, time duration in one
TDMA frame is a common resource for every
terminals. When many user terminals suffer rain
attenuation, several terminals will wait to access
until a vacant time slot appear and some termi-
nals will break down due to the degradation of
communication links.

In in-house experiments, the receive terminal
connects with the transmit terminal through IF
port and monitors BER to detect degradation in
communication link. C/No is degraded by addi-
tive white Gaussian noise according to rain at-
tenuation data that were measured and stored
using satellite links. Using several values of Tu
and Td, BER and total burst lengths are mea-
sured and shown in Figure 5. As Tu becomes
larger, BER becomes smaller, but TDMA burst
lengths, with respect to the burst length of the
fastest rate, become considerably large. Both
improvement in BER and increase of burst
lengths is more remarkable as Td becomes
smaller.

Figure 6 shows comparison of this experi-
mental result with the result obtained by the
constant-rate TDMA terminal. The lower
transmission rates of N=4 and 5 can provide
very good BER performance but the TDMA
burst of this terminal will occupy a large part in
one TDMA frame. The number of user termi-
nals than can access this TDMA network is very
restricted. The ATR-TDMA terminal has better
performance in both BER and burst lengths than
the conventional constant-rate TDMA.

Computer Simulation

To study the effect in BER and burst lengths
under different rain conditions and different Tu,
and Td, we have carried out computer simulation
of the ATR-TDMA system. C/No is controlled
with measured data of rain attenuation and BER
is calculated from the measured BER perfor-
mance of the TDMA terminal. Table 1 shows
typical values of Tu and Td, which correspond
to different traffic conditions in a satellite

transponder. In situation of mode #3, since only

a few vacant time slots remain in one TDMA
fame due to high traffic condition, transmission
rate cannot be reduced quickly and has to be
brought back to its rate as soon as possible after
the weather improves. On the other hand, mode
#4 prefers to maintain the communication quality
rather than to shorten used burst lengths.

Figure 7 and 8 show the probability that
BER is worse than the threshold as a function of
used total burst lengths using rain attenuation
measured for twenty rainy days. In Figure 8,
data, which are picked up from severe rain
events, are normalized with the result of mode
#4.

Slow reduction of transmission rates in
modes #2 and #3 increases the probability that
BER is worse than the threshold up to about
20% in severe rain events as shown in Figure 7.
Simulation results, however, shows that ATR-
TDMA is effective to compensale rain attenua-
tion under many different rain conditions.

Figure 8 shows that values of Tu is insensi-
tive to the probability that BER is worse than the
threshold and total burst lengths decrease as Td
becomes smaller. Parameter Td is more impor-
tant than Tu to improve BER performance under
rain attenuation.

Since the response time should be less than
rain attenuation rate for successful control of
transmission rate, the optimum value of Td must
be as small value as possible. However, one-
way propagation delay for a geostationary satel-
lite link is on the order of 0.25 seconds, and a
similar amount of time is required for receive
terminals to request reduction of transmission
rates to their transmit terminals. Moreover, It
will take a couple of seconds for receive termi-
nals to measure BER or C/No for measuring rain
attenuation, and there are also additional system
processing delays including delay due to control
algorithm. Therefore, control delay of trans-
mission rates from instantaneous rain attenuation
is inevitable. In spite of such delay factors, ex-
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perimental results showed that Td of 3 to 5 sec-
onds are effective to compensate rain attenua-
tion.

CONCLUSION

Adaptive transmission-rate TDMA system to
compensate rain attenuation is presented. At the
beginning, this system was developed for busi-
ness networks consisting of different size earth
stations at Ka-band frequency Therefore,
transmission rates available in this system may
be too fast for applications of mobile and per-
sonal satellite communications. However, the
same adaptive control scheme can be applied to
these systems at lower transmission rates.

To evaluate the performance, we carried out
three kinds of experiments: satellite experiments,
in-house experiments, and computer simula-
tions. The ATR-TDMA system showed advan-
tages over the the conventional constant-rate
TDMA system to maintain both communication
quality and capacity under rainy weather.

When we apply adaptive control of data rate
to SCPC systems, the reduction of data rate will
result also in a reduction of service quality.
However, this TDMA scheme reduce transmis-
sion rate in RF, but does not reduce data rate at
baseband. Thus service quality is not reduced
except very severe rain and heavy traffic condi-
tions. This adaptive control method is suitable
to future mobile or personal satellite communica-
tion systems at higher frequencies such as Ka-
band or millimeter wave for compensating rain
attenuation.
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